

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Building Angular with Bazel

Note: this doc is for developing Angular, it is not public
documentation for building an Angular application with Bazel.

The Bazel build tool (http://bazel.build) provides fast, reliable
incremental builds. We plan to migrate Angular’s build scripts to
Bazel.

Installation

In order to ensure that everyone builds Angular in a consistent way, Bazel
will be installed through NPM and therefore it’s not necessary to install Bazel
manually.

The binaries for Bazel will be provided by the @bazel/bazel [https://github.com/bazelbuild/rules_nodejs/tree/master/packages]
NPM package and its platform-specific dependencies.

You can access Bazel with the yarn bazel command

Configuration

The WORKSPACE file indicates that our root directory is a
Bazel project. It contains the version of the Bazel rules we
use to execute build steps, from build_bazel_rules_typescript.
The sources on GitHub [https://github.com/bazelbuild/rules_typescript] are published from Google’s internal
repository (google3).

Bazel accepts a lot of options. We check in some options in the
.bazelrc file. See the bazelrc doc [https://bazel.build/versions/master/docs/bazel-user-manual.html#bazelrc]. For example, if you don’t
want Bazel to create several symlinks in your project directory
(bazel-*) you can add the line build --symlink_prefix=/ to your
.bazelrc file.

Building Angular

	Build a package: yarn bazel build packages/core

	Build all packages: yarn bazel build packages/...

You can use ibazel [https://github.com/bazelbuild/bazel-watcher] to get a “watch mode” that continuously
keeps the outputs up-to-date as you save sources. Note this is
new as of May 2017 and not very stable yet.

Testing Angular

	Test package in node: yarn bazel test packages/core/test:test

	Test package in karma: yarn bazel test packages/core/test:test_web

	Test all packages: yarn bazel test packages/...

You can use ibazel [https://github.com/bazelbuild/bazel-watcher] to get a “watch mode” that continuously
keeps the outputs up-to-date as you save sources.

Various Flags Used For Tests

If you’re experiencing problems with seemingly unrelated tests failing, it may be because you’re not using the proper flags with your Bazel test runs in Angular.

See also: //.bazelrc [https://github.com/angular/angular/blob/master/.bazelrc] where --define=compile=legacy is defined as default.

	--config=debug: build and launch in debug mode (see debugging instructions below)

	--test_arg=--node_options=--inspect=9228: change the inspector port.

	--define=compile=<option> Controls if ivy or legacy mode is enabled. This switches which compiler is used (ngc, ngtsc, or a tsc pass-through mode).

	legacy: (default behavior) compile against View Engine, e.g. --define=compile=legacy

	jit: Compile in ivy JIT mode, e.g. --define=compile=jit

	aot: Compile in ivy AOT move, e.g. --define=compile=aot

	--test_tag_filters=<tag>: filter tests down to tags defined in the tag config of your rules in any given BUILD.bazel.

	no-ivy-aot: Useful for excluding build and test targets that are not meant to be executed in Ivy AOT mode (--define=compile=aot).

	no-ivy-jit: Useful for excluding build and test targets that are not meant to be executed in Ivy JIT mode (--define=compile=jit).

	ivy-only: Useful for excluding all Ivy build and tests targets with --define=compile=legacy.

	fixme-ivy-aot: Useful for including/excluding build and test targets that are currently broken in Ivy AOT mode (--define=compile=aot).

	fixme-ivy-jit: Useful for including/excluding build and test targets that are currently broken in Ivy JIT mode (--define=compile=jit).

Debugging a Node Test

	Open chrome at: chrome://inspect

	Click on Open dedicated DevTools for Node to launch a debugger.

	Run test: yarn bazel test packages/core/test:test --config=debug

The process should automatically connect to the debugger. For additional info and testing options, see the nodejs_test documentation [https://bazelbuild.github.io/rules_nodejs/node/node.html#nodejs_test].

Debugging a Node Test in VSCode

First time setup:

	Go to Debug > Add configuration (in the menu bar) to open launch.json

	Add the following to the configurations array:

 {
 "name": "Attach (inspect)",
 "type": "node",
 "request": "attach",
 "port": 9229,
 "address": "localhost",
 "restart": false,
 "sourceMaps": true,
 "localRoot": "${workspaceRoot}",
 "remoteRoot": null
 },
 {
 "name": "Attach (no-sm,inspect)",
 "type": "node",
 "request": "attach",
 "port": 9229,
 "address": "localhost",
 "restart": false,
 "sourceMaps": false,
 "localRoot": "${workspaceRoot}",
 "remoteRoot": null
 },

Setting breakpoints directly in your code files may not work in VSCode. This is because the files you’re actually debugging are built files that exist in a ./private/... folder.
The easiest way to debug a test for now is to add a debugger statement in the code
and launch the bazel corresponding test (yarn bazel test <target> --config=debug).

Bazel will wait on a connection. Go to the debug view (by clicking on the sidebar or
Apple+Shift+D on Mac) and click on the green play icon next to the configuration name
(ie Attach (inspect)).

Debugging a Karma Test

	Run test: yarn bazel run packages/core/test:test_web

	Open chrome at: http://localhost:9876/debug.html

	Open chrome inspector

Debugging Bazel rules

Open external directory which contains everything that bazel downloaded while executing the workspace file:

open $(bazel info output_base)/external

See subcommands that bazel executes (helpful for debugging):

yarn bazel build //packages/core:package -s

To debug nodejs_binary executable paths uncomment find . -name rollup 1>&2 (~ line 96) in

open $(bazel info output_base)/external/build_bazel_rules_nodejs/internal/node_launcher.sh

Stamping

Bazel supports the ability to include non-hermetic information from the version control system in built artifacts. This is called stamping.
You can see an overview at https://www.kchodorow.com/blog/2017/03/27/stamping-your-builds/
In our repo, here is how it’s configured:

	In tools/bazel_stamp_vars.sh we run the git commands to generate our versioning info.

	In .bazelrc we register this script as the value for the workspace_status_command flag. Bazel will run the script when it needs to stamp a binary.

Note that Bazel has a --stamp argument to yarn bazel build, but this has no effect since our stamping takes place in Skylark rules. See https://github.com/bazelbuild/bazel/issues/1054

Remote cache

Bazel supports fetching action results from a cache, allowing a clean build to pick up artifacts from prior builds.
This makes builds incremental, even on CI.
It works because Bazel assigns a content-based hash to all action inputs, which is used as the cache key for the action outputs.
Thanks to the hermeticity property, we can skip executing an action if the inputs hash is already present in the cache.

Of course, non-hermeticity in an action can cause problems.
At worst, you can fetch a broken artifact from the cache, making your build non-reproducible.
For this reason, we are careful to implement our Bazel rules to depend only on their inputs.

Currently we only use remote caching on CircleCI.
We could enable it for developer builds as well, which would make initial builds much faster for developers by fetching already-built artifacts from the cache.

This feature is experimental, and developed by the CircleCI team with guidance from Angular.
Contact Alex Eagle with questions.

How it’s configured:

	In .circleci/config.yml, each CircleCI job downloads a proxy binary, which is built from https://github.com/notnoopci/bazel-remote-proxy. The download is done by running .circleci/setup_cache.sh. When the feature graduates from experimental, this proxy will be installed by default on every CircleCI worker, and this step will not be needed.

	Next, each job runs the setup-bazel-remote-cache anchor. This starts up the proxy running in the background. In the CircleCI UI, you’ll see this step continues running while later steps run, and you can see logging from the proxy process.

	Bazel must be configured to connect to the proxy on a local port. This configuration lives in .circleci/bazel.rc and is enabled because we overwrite the system Bazel settings in /etc/bazel.bazelrc with this file.

	Each bazel command in .circleci/config.yml picks up and uses the caching flags.

Known issues

Webstorm

The autocompletion in WebStorm can be added via a Bazel plugin intended for IntelliJ IDEA, but the plugin needs to be installed in a special way.
See bazelbuild/intellij#246 [https://github.com/bazelbuild/intellij/issues/246] for more info.

Xcode

If you see the following error:

$ yarn bazel build packages/...
ERROR: /private/var/tmp/[...]/external/local_config_cc/BUILD:50:5: in apple_cc_toolchain rule @local_config_cc//:cc-compiler-darwin_x86_64: Xcode version must be specified to use an Apple CROSSTOOL
ERROR: Analysis of target '//packages/core/test/render3:render3' failed; build aborted: Analysis of target '@local_config_cc//:cc-compiler-darwin_x86_64' failed; build aborted

It might be linked to an interaction with VSCode.
If closing VSCode fixes the issue, you can add the following line to your VSCode configuration:

"files.exclude": {"bazel-*": true}

source: https://github.com/bazelbuild/bazel/issues/4603

If VSCode is not the root cause, you might try:

	Quit VSCode (make sure no VSCode is running).

bazel clean --expunge
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
sudo xcodebuild -license
yarn bazel build //packages/core # Run a build outside VSCode to pre-build the xcode; then safe to run VSCode

Source: https://stackoverflow.com/questions/45276830/xcode-version-must-be-specified-to-use-an-apple-crosstool

Caretaker

Caretaker is responsible for merging PRs into the individual branches and internally at Google.

Responsibilities

	Draining the queue of PRs ready to be merged. (PRs with PR action: merge [https://github.com/angular/angular/pulls?q=is%3Aopen+is%3Apr+label%3A%22PR+action%3A+merge%22] label)

	Assigning new issues [https://github.com/angular/angular/issues?q=is%3Aopen+is%3Aissue+no%3Alabel] to individual component authors.

Merging the PR

A PR needs to have PR action: merge and PR target: * labels to be considered
ready to merge. Merging is performed by running merge-pr with a PR number to merge.

To merge a PR run:

$./scripts/github/merge-pr 1234

The merge-pr script will:

	Ensure that all appropriate labels are on the PR.

	Fetches the latest PR code from the angular/angular repo.

	It will cherry-pick all of the SHAs from the PR into the current corresponding branches master and or ?.?.x (patch).

	It will rewrite commit history by automatically adding Close #1234 and (#1234) into the commit message.

NOTE: The merge-pr will land the PR on master and or ?.?.x (patch) as described by PR target: * label.

Recovering from failed merge-pr due to conflicts

When running merge-pr the script will output the commands which it is about to run.

$./scripts/github/merge-pr 1234
======================
GitHub Merge PR Steps
======================
 git cherry-pick angular/pr/1234~1..angular/pr/1234
 git filter-branch -f --msg-filter "/home/misko/angular/scripts/github/utils/github.closes 1234" HEAD~1..HEAD

If the cherry-pick command fails than resolve conflicts and use git cherry-pick --continue once ready. After the cherry-pick is done cut&paste and run the filter-branch command to properly rewrite the messages

Cherry-picking PRs into patch branch

In addition to merging PRs into the master branch, many PRs need to be also merged into a patch branch.
Follow these steps to get patch branch up to date.

	Check out the most recent patch branch: git checkout 4.3.x

	Get a list of PRs merged into master: git log master --oneline -n10

	For each PR number in the commit message run: ./scripts/github/merge-pr 1234

	The PR will only merge if the PR target: matches the branch.

Once all of the PRs are in patch branch, push the all branches and tags to github using push-upstream script.

Pushing merged PRs into github

Use push-upstream script to push all of the branch and tags to github.

$./scripts/github/push-upstream
git push git@github.com:angular/angular.git master:master 4.3.x:4.3.x
Counting objects: 25, done.
Delta compression using up to 6 threads.
Compressing objects: 100% (17/17), done.
Writing objects: 100% (25/25), 2.22 KiB | 284.00 KiB/s, done.
Total 25 (delta 22), reused 8 (delta 7)
remote: Resolving deltas: 100% (22/22), completed with 18 local objects.
To github.com:angular/angular.git
 079d884b6..d1c4a94bb master -> master
git push --tags -f git@github.com:angular/angular.git patch_sync:patch_sync
Everything up-to-date

Pushing changes into the Angular tree

Please see Using git with Angular repositories [https://docs.google.com/document/d/1h8nijFSaa1jG_UE8v4WP7glh5qOUXnYtAtJh_gwOQHI/edit]
for details about how we maintain a linear commit history, and the rules for committing.

As a contributor, just read the instructions in CONTRIBUTING.md and send a pull request.
Someone with committer access will do the rest.

Change approvals

Change approvals in our monorepo are managed via pullapprove.com [https://about.pullapprove.com/] and are configured via the .pullapprove.yaml file.

Merging

Once a change has all the approvals either the last approver or the PR author (if PR author has the project collaborator status) should mark the PR with PR: merge as well as PR target: * labels.
This signals to the caretaker that the PR should be merged. See merge instructions.

Who is the Caretaker?

See this explanation [https://twitter.com/IgorMinar/status/799365744806854656].

Debugging Angular

The Angular project has comprehensive unit tests for the core packages and the tools.
The core packages are tested both in the browser (via Karma) and on the server (via Node.js).

Debugging in Karma

Run the unit tests as normal using via the ./test.sh script. For example:

./test.sh browserNoRouter

Once the initial build has completed and the Karma server has started up, you can go to the
Chrome browser that is automatically opened, usually pointing to http://localhost:9876.
The script will sit watching for code changes, recompiling the changed files and triggering
further runs of the unit tests in the browser.

In this browser there is a “DEBUG” link (in the top right corner). Clicking this link will
open up a new tab that will run the unit tests and will not timeout, giving you time to
step through the code.

Open up this tab’s developer console to access the source code viewer where you can set
breakpoints and interrogate the current stack and variables.

It is useful to focus your debugging on one test at a time by changing that test to be
defined using the fit(...) function, rather than it(...). Moreover it can be helpful
to place a debugger statement in this fit clause to cause the debugger to stop when
it hits this test.

Debugging in Node

Run the unit tests as normal using the ./test.sh script, but add the --debug flag to
the command. For example:

./test.sh node --debug

Once the initial building has completed, the script will watch for code changes, recompiling
and running the unit tests via a tool call cjs-jasmine. Due to the --debug flag, each
test run will create a debugging server listening on a port (such as 9229), which can be
connected to by a debugger.

You can use Chrome as the debugger by navigating to chrome://inspect then clicking the
“Open dedicated DevTools for Node” link. This will open up a Developer console, which will
automatically connect to the debugging server.

It is useful to focus your debugging on one test at a time by changing that test to be
defined using the fit(...) function, rather than it(...). Moreover it can be helpful
to place a debugger statement in this fit clause to cause the debugger to stop when
it hits this test.

Problem with node 6: at the time of writing, the node process does not tell the Chrome
debugger when it has completed, and so the debugger is not able to automatically disconnect
from listening to the debugging server. To solve this, just close the developer tools window
after each run of the unit tests, before making changes to the code. This is fixed in node 8
and may be backported to node 6. This issue is tracked in
https://github.com/nodejs/node/pull/12814#issuecomment-309908579.

Building and Testing Angular

This document describes how to set up your development environment to build and test Angular.
It also explains the basic mechanics of using git, node, and npm.

	Prerequisite Software

	Getting the Sources

	Installing NPM Modules

	Building

	Running Tests Locally

See the contribution guidelines [https://github.com/angular/angular/blob/master/CONTRIBUTING.md]
if you’d like to contribute to Angular.

Prerequisite Software

Before you can build and test Angular, you must install and configure the
following products on your development machine:

	Git [http://git-scm.com] and/or the GitHub app (for Mac [http://mac.github.com] or
Windows [http://windows.github.com]); GitHub’s Guide to Installing
Git [https://help.github.com/articles/set-up-git] is a good source of information.

	Node.js [http://nodejs.org], (version specified in the engines field of package.json) which is used to run a development web server,
run tests, and generate distributable files.

	Yarn [https://yarnpkg.com] (version specified in the engines field of package.json) which is used to install dependencies.

	Java Development Kit [http://www.oracle.com/technetwork/es/java/javase/downloads/index.html] which is used
to execute the selenium standalone server for e2e testing.

	(Optional for now) Bazel [https://bazel.build/], please follow instructions in BAZEL.md [https://github.com/angular/angular/blob/master/docs/BAZEL.md]

Getting the Sources

Fork and clone the Angular repository:

	Login to your GitHub account or create one by following the instructions given
here [https://github.com/signup/free].

	Fork [http://help.github.com/forking] the main Angular
repository [https://github.com/angular/angular].

	Clone your fork of the Angular repository and define an upstream remote pointing back to
the Angular repository that you forked in the first place.

Clone your GitHub repository:
git clone git@github.com:<github username>/angular.git

Go to the Angular directory:
cd angular

Add the main Angular repository as an upstream remote to your repository:
git remote add upstream https://github.com/angular/angular.git

Installing NPM Modules

Next, install the JavaScript modules needed to build and test Angular:

Install Angular project dependencies (package.json)
yarn install

Optional: In this document, we make use of installed npm package scripts and binaries
(stored under ./node_modules/.bin) by prefixing these command invocations with $(yarn bin); in
particular gulp and protractor commands.

Windows only

In order to create the right symlinks, run as administrator:

./scripts/windows/create-symlinks.sh

Before submitting a PR, do not forget to remove them:

 ./scripts/windows/remove-symlinks.sh

Building

To build Angular run:

./build.sh

	Results are put in the dist folder.

Running Tests Locally

To run tests:

$./test.sh node # Run all angular tests on node

$./test.sh browser # Run all angular tests in browser

$./test.sh browserNoRouter # Optionally run all angular tests without router in browser

$./test.sh router # Optionally run only the router tests in browser

You should execute the 3 test suites before submitting a PR to github.

See DEBUG.md for information on debugging the code while running the unit tests.

All the tests are executed on our Continuous Integration infrastructure and a PR could only be merged once the tests pass.

	CircleCI fails if your code is not formatted properly,

	Travis CI fails if any of the test suites described above fails.

[bookmark: clang-format] Formatting your source code

Angular uses clang-format [http://clang.llvm.org/docs/ClangFormat.html] to format the source code. If the source code
is not properly formatted, the CI will fail and the PR can not be merged.

You can automatically format your code by running:

$ gulp format

There is a handy clang-format extension [https://marketplace.visualstudio.com/items?itemName=xaver.clang-format]
for Visual Studio Code. Use the following settings to format your code when you save a file:

{
 "editor.formatOnSave": true,
 "clang-format.executable": "${workspaceRoot}/node_modules/.bin/clang-format"
}

Linting/verifying your source code

You can check that your code is properly formatted and adheres to coding style by running:

$ gulp lint

Publishing snapshot builds

When a build of any branch on the upstream fork angular/angular is green on CircleCI,
it automatically publishes build artifacts
to repositories in the Angular org, eg. the @angular/core package is published to
http://github.com/angular/core-builds.

You may find that your un-merged change needs some validation from external participants.
Rather than requiring them to pull your Pull Request and build Angular locally, you can
publish the *-builds snapshots just like our Travis build does.

First time, you need to create the github repositories:

$ export TOKEN=[get one from https://github.com/settings/tokens]
$ CREATE_REPOS=1 TRAVIS= ./scripts/ci/publish-build-artifacts.sh [github username]

For subsequent snapshots, just run

$./scripts/publish/publish-build-artifacts.sh [github username]

The script will publish the build snapshot to a branch with the same name as your current branch,
and create it if it doesn’t exist.

Naming Conventions in Angular

In general Angular should follow TypeScript naming conventions.
See: https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines

Classes:

	Example: Compiler, ApplicationMetadata

	Camel case with first letter uppercase

	In general prefer single words. (This is so that when appending Proto or Factory the class
is still reasonable to work with.)

	Should not end with Impl or any other word which describes a specific implementation of an
interface.

Interfaces:

	Follow the same rules as Classes

	Should not have I or Interface in the name or any other way of identifying it as an interface.

Methods and functions:

	Example: bootstrap, someMethod

	Should be camel case with first letter lowercase

Constants:

	Example: CORE_DIRECTIVES

	Should be all uppercase with SNAKE_CASE

PR Review

Tools

A better way to do a code-review of a PR is to do it in your IDE.
Here are two scripts which allow you to perform the review and create local changes which can be appended to the PR.

1. Loading PR

Run this command to load the changes into your local repository where your IDE is running.

$./scripts/github/review-pr 24623

This will result in output:

Already on 'master'
Your branch is up to date with 'origin/master'.
Fetching pull request #24623 with 1 SHA(s) into branch range: pr/24623_base..pr/24623_top
==
cef93a51b (pr/24623_top) ci: scripts to review PRs locally
==
Switched to a new branch 'pr/24623'
On branch pr/24623
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 docs/PR_REVIEW.md
 scripts/github/push-pr
 scripts/github/review-pr

nothing added to commit but untracked files present (use "git add" to track)

Note that the script created pr/24623_top and pr/24623_base branches which denote SHAs where the PR start and end.

cef93a51b (pr/24623_top) ci: scripts to review PRs locally
637805a0c (pr/24623_base) docs: update `lowercase` pipe example in "AngularJS to Angular" guide (#24588)

Knowing pr/24623_top and pr/24623_base makes it convenient to refer to different SHAs in PR when rebasing or reseting.

2. Review PR

Because the script has reset the HEAD of the PR the changes show up as unstaged files.

$ git status
On branch pr/24623
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 docs/PR_REVIEW.md
 scripts/github/push-pr
 scripts/github/review-pr

nothing added to commit but untracked files present (use "git add" to track)

Use your IDE to review the untracked files as needed.
A good trick is to use your IDE to stage the files which were already reviewed.
When all files are staged the review is done.

3. Creating Edits

At any point you can edit any line in the repository.
The idea is to create edits locally and push them to the PR later.
This is useful because it is often times easier to make minor changes locally than to request the PR author to change and repush through a comment (often times the comment is larger than the change.)

Example of a local edit.

echo "# here is a change" >> docs/PR_REVIEW.md

4. Creating a Commit From Local Edits

Since the HEAD has been reset to pr/24623_base so that changes show up in git status we have to reverse the reset to only see our local changes.
To do that reset the HEAD to pr/24623_top.

$ git reset pr/24623_top

Doing so will remove all PR changes and only leave your local modifications which you have done.
You can verify by running git status and git diff to see only your changes (PR changes have been removed.)

$ git status
On branch pr/24623
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: docs/PR_REVIEW.md

no changes added to commit (use "git add" and/or "git commit -a")

$ git diff
diff --git a/docs/PR_REVIEW.md b/docs/PR_REVIEW.md
index 184b5aeca..83517fbe0 100644
--- a/docs/PR_REVIEW.md
+++ b/docs/PR_REVIEW.md
@@ -8,4 +8,4 @@ A better way to do code review of the PR is to do it in your IDE. Here are two s
existing text
-
\ No newline at end of file
+# here is a change

Next step is to turn your local changes into a fixup! commit.
Run git commit --all --fixup HEAD to create a fixup! commit.

NOTE: If you added new files they must be added using git add . or they will not be picked up by the git commit --all flag.

$ git commit --all --fixup HEAD
[pr/24623 45ae87ce4] fixup! ci: scripts to review PRs locally
 1 file changed, 1 insertion(+), 1 deletion(-)

You can verify that the fixup! commit with your local modifications was created.

$ git log --oneline
45ae87ce4 (HEAD -> pr/24623) fixup! ci: scripts to review PRs locally
cef93a51b (pr/24623_top) ci: scripts to review PRs locally

5. Pushing local edits back to the PR

The last step is to push your local changes back into the PR.
Use ./scripts/github/push-pr script for that.

$./scripts/github/push-pr
Assuming PR #24623
>>> git push git@github.com:mhevery/angular.git HEAD:review_pr_script
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 392 bytes | 392.00 KiB/s, done.
Total 4 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
To github.com:mhevery/angular.git
 cef93a51b..45ae87ce4 HEAD -> review_pr_script

NOTE: Notice that we did not have to specify the PR number since the script can guess it from the branch name.

If you visit https://github.com/angular/angular/pull/24623/commits you will see that your fixup! commit has been added to the PR.
This greatly simplifies the work for many minor changes to the PR.

Supported Public API Surface of Angular

Our semver, timed-release cycle and deprecation policy currently applies to these npm packages:

	@angular/animations

	@angular/core

	@angular/common

	@angular/elements

	@angular/forms

	@angular/http

	@angular/platform-browser

	@angular/platform-browser-dynamic

	@angular/platform-server

	@angular/platform-webworker

	@angular/platform-webworker-dynamic

	@angular/upgrade

	@angular/router

	@angular/service-worker

One intentional omission from this list is @angular/compiler, which is currently considered a low level api and is subject to internal changes. These changes will not affect any applications or libraries using the higher-level apis (the command line interface or JIT compilation via @angular/platform-browser-dynamic). Only very specific use-cases require direct access to the compiler API (mostly tooling integration for IDEs, linters, etc). If you are working on this kind of integration, please reach out to us first.

Package @angular/bazel is currently an Angular Labs project and not covered by the public API guarantees.

Additionally only the command line usage (not direct use of APIs) of @angular/compiler-cli is covered.

Other projects developed by the Angular team like angular-cli, Angular Material, will be covered by these or similar guarantees in the future as they mature.

Within the supported packages, we provide guarantees for:

	symbols exported via the main entry point (e.g. @angular/core) and testing entry point (e.g. @angular/core/testing). This applies to both runtime/JavaScript values and TypeScript types.

	symbols exported via global namespace ng (e.g. ng.core)

	bundles located in the bundles/ directory of our npm packages (e.g. @angular/core/bundles/core.umd.js)

We explicitly don’t consider the following to be our public API surface:

	any file/import paths within our package except for the /, /testing and /bundles/* and other documented package entry-points.

	constructors of injectable classes (services and directives) - please use DI to obtain instances of these classes

	any class members or symbols marked as private, or prefixed with underscore (_) and barred latin o [https://en.wikipedia.org/wiki/%C6%9F] (ɵ)

	extending any of our classes unless the support for this is specifically documented in the API docs

	the contents and API surface of the code generated by Angular’s compiler (with one notable exception: the existence and name of NgModuleFactory instances exported from generated code is guaranteed)

Our peer dependencies (e.g. TypeScript, Zone.js, or RxJS) are not considered part of our API surface, but they are included in our SemVer policies. We might update the required version of any of these dependencies in minor releases if the update doesn’t cause breaking changes for Angular applications. Peer dependency updates that result in non-trivial breaking changes must be deferred to major Angular releases.

Angular Release Schedule

The Angular release schedule has moved.

See Angular releases [https://angular.io/guide/releases] for information about release policies and practices—

including deprecation and support practices—

as well as estimated dates for our next major releases.

Saved Responses for Angular’s Issue Tracker

The following are canned responses that the Angular team should use to close issues on our issue tracker that fall into the listed resolution categories.

Since GitHub currently doesn’t allow us to have a repository-wide or organization-wide list of saved replies [https://help.github.com/articles/working-with-saved-replies/], these replies need to be maintained by individual team members. Since the responses can be modified in the future, all responses are versioned to simplify the process of keeping the responses up to date.

Angular: Already Fixed (v2)

Thanks for reporting this issue. Luckily it has already been fixed in one of the recent releases. Please update to the most recent version to resolve the problem.

If after upgrade the problem still exists in your application please open a new issue and provide a StackBlitz reproducing the problem and describing the difference between the expected and current behavior. You can use this StackBlitz template: https://stackblitz.com/fork/angular-gitter

Angular: Don’t Understand (v2)

I'm sorry but we don't understand the problem you are reporting.

If the problem still exists please open a new issue and provide a StackBlitz reproducing the problem and describing the difference between the expected and current behavior. You can use this StackBlitz template: https://stackblitz.com/fork/angular-gitter

Angular: StackBlitz Needed (v1)

I'm sorry but reported issues require a StackBlitz reproducing the problem.

If this issue persists, please create a StackBlitz using this template and describe the difference between the expected and current behavior and create a new issue: https://stackblitz.com/fork/angular-gitter

Angular: Duplicate (v1)

Thanks for reporting this issue. However this issue is a duplicate of an existing issue #<ISSUE_NUMBER>. Please subscribe to that issue for future updates.

Angular: Insufficient Information Provided (v1)

Thanks for reporting this issue. However, you didn't provide sufficient information for us to understand and reproduce the problem. Please check out [our submission guidelines](https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-submitting-an-issue) to understand why we can't act on issues that are lacking important information.

If the problem still persists, please file a new issue and ensure you provide all of the required information when filling out the issue template.

Angular: Issue Outside of Angular (v1)

I'm sorry but this issue is not caused by Angular. Please contact the author(s) of project <PROJECT NAME> or file issue on their issue tracker.

Angular: Behaving as Expected (v1)

It appears this behaves as expected. If you still feel there is an issue, please provide further details in a new issue.

Angular: Non-reproducible (v1)

I'm sorry but we can't reproduce the problem following the instructions you provided.

If the problem still exists please open a new issue following [our submission guidelines](https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-submitting-an-issue).

Angular: Obsolete (v1)

Thanks for reporting this issue. This issue is now obsolete due to changes in the recent releases. Please update to the most recent Angular version.

If the problem still persists, please file a new issue and ensure you provide the version of Angular affected and include the steps to reproduce the problem when filling out the issue template.

Angular: Support Request (v1)

Hello, we reviewed this issue and determined that it doesn't fall into the bug report or feature request category. This issue tracker is not suitable for support requests, please repost your issue on [StackOverflow](http://stackoverflow.com/) using tag `angular`.

If you are wondering why we don't resolve support issues via the issue tracker, please [check out this explanation](https://github.com/angular/angular/blob/master/CONTRIBUTING.md#-got-a-question-or-problem).

Developer Tools for Angular

Here you will find a collection of tools and tips for keeping your application
perform well and contain fewer bugs.

Angular debug tools in the dev console

Angular provides a set of debug tools that are accessible from any browser’s
developer console. In Chrome the dev console can be accessed by pressing
Ctrl + Shift + j.

Enabling debug tools

By default the debug tools are disabled. You can enable debug tools as follows:

import {ApplicationRef} from '@angular/core';
import {platformBrowserDynamic} from '@angular/platform-browser-dynamic';
import {enableDebugTools} from '@angular/platform-browser';

platformBrowserDynamic().bootstrapModule(AppModule)
 .then(moduleRef => {
 const applicationRef = moduleRef.injector.get(ApplicationRef);
 const appComponent = applicationRef.components[0];
 enableDebugTools(appComponent);
 })

Using debug tools

In the browser open the developer console (Ctrl + Shift + j in Chrome). The
top level object is called ng and contains more specific tools inside it.

Example:

ng.profiler.timeChangeDetection();

Performance

Change detection profiler

If your application is janky (it misses frames) or is slow according to other
metrics, it is important to find the root cause of the issue. Change detection
is a phase in Angular’s lifecycle that detects changes in values that are
bound to UI, and if it finds a change it performs the corresponding UI update.
However, sometimes it is hard to tell if the slowness is due to the act of
computing the changes being slow, or due to the act of applying those changes
to the UI. For your application to be performant it is important that the
process of computing changes is very fast. For best results it should be under
3 milliseconds in order to leave room for the application logic, the UI updates
and browser’s rendering pipeline to fit within the 16 millisecond frame
(assuming the 60 FPS target frame rate).

Change detection profiler repeatedly performs change detection without invoking
any user actions, such as clicking buttons or entering text in input fields. It
then computes the average amount of time it took to perform a single cycle of
change detection in milliseconds and prints it to the console. This number
depends on the current state of the UI. You will likely see different numbers
as you go from one screen in your application to another.

Running the profiler

Enable debug tools (see above), then in the dev console enter the following:

ng.profiler.timeChangeDetection();

The results will be printed to the console.

Recording CPU profile

Pass {record: true} an argument:

ng.profiler.timeChangeDetection({record: true});

Then open the “Profiles” tab. You will see the recorded profile titled
“Change Detection”. In Chrome, if you record the profile repeatedly, all the
profiles will be nested under “Change Detection”.

Interpreting the numbers

In a properly-designed application repeated attempts to detect changes without
any user actions should result in no changes to be applied on the UI. It is
also desirable to have the cost of a user action be proportional to the amount
of UI changes required. For example, popping up a menu with 5 items should be
vastly faster than rendering a table of 500 rows and 10 columns. Therefore,
change detection with no UI updates should be as fast as possible. Ideally the
number printed by the profiler should be well below the length of a single
animation frame (16ms). A good rule of thumb is to keep it under 3ms.

Investigating slow change detection

So you found a screen in your application on which the profiler reports a very
high number (i.e. >3ms). This is where a recorded CPU profile can help. Enable
recording while profiling:

ng.profiler.timeChangeDetection({record: true});

Then look for hot spots using
Chrome CPU profiler [https://developer.chrome.com/devtools/docs/cpu-profiling].

Reducing change detection cost

There are many reasons for slow change detection. To gain intuition about
possible causes it would help to understand how change detection works. Such a
discussion is outside the scope of this document (TODO link to docs), but here
are some key concepts in brief.

By default Angular uses “dirty checking” mechanism for finding model changes.
This mechanism involves evaluating every bound expression that’s active on the
UI. These usually include text interpolation via {{expression}} and property
bindings via [prop]="expression". If any of the evaluated expressions are
costly to compute they could contribute to slow change detection. A good way to
speed things up is to use plain class fields in your expressions and avoid any
kinds of computation. Example:

@Component({
 template: '<button [enabled]="isEnabled">{{title}}</button>'
})
class FancyButton {
 // GOOD: no computation, just return the value
 isEnabled: boolean;

 // BAD: computes the final value upon request
 _title: String;
 get title(): String { return this._title.trim().toUpperCase(); }
}

Most cases like these could be solved by precomputing the value and storing the
final value in a field.

Angular also supports a second type of change detection - the “push” model. In
this model Angular does not poll your component for changes. Instead, the
component “tells” Angular when it changes and only then does Angular perform
the update. This model is suitable in situations when your data model uses
observable or immutable objects (also a discussion for another time).

Triage Process and GitHub Labels for Angular

This document describes how the Angular team uses labels and milestones to triage issues on github.
The basic idea of the process is that caretaker only assigns a component (comp: *) label.
The owner of the component is then responsible for the secondary / component-level triage.

Label Types

Components

The caretaker should be able to determine which component the issue belongs to.
The components have a clear piece of source code associated with it within the /packages/ folder of this repo.

	comp: docs-infra - the angular.io application

	comp: animations

	comp: bazel - @angular/bazel rules

	comp: benchpress

	comp: common - this includes core components / pipes

	comp: common/http - this includes core components / pipes

	comp: core & compiler - because core, compiler, compiler-cli and
browser-platforms are very intertwined, we will be treating them as one

	comp: ivy - a subset of core representing the new Ivy renderer.

	comp: elements

	comp: forms

	comp: http

	comp: i18n

	comp: language-service

	comp: metadata-extractor

	comp: router

	comp: server

	comp: service-worker

	comp: testing

	comp: upgrade/dynamic

	comp: upgrade/static

	comp: web-worker

	comp: zones

There are few components which are cross-cutting.
They don’t have a clear location in the source tree.
We will treat them as a component even thought no specific source tree is associated with them.

	comp: build & ci - build and CI infrastructure for the angular/angular repo

	comp: docs - documentation, including API docs, guides, tutorial

	comp: packaging - packaging format of @angular/* npm packages

	comp: performance

	comp: security

Sometimes, especially in the case of cross-cutting issues or PRs, these PRs or issues belong to multiple components.
In these cases, all applicable component labels should be used to triage the issue or PR.

Type

What kind of problem is this?

	type: RFC / discussion / question

	type: bug

	type: docs

	type: feature

	type: performance

	type: refactor

Caretaker Triage Process (Primary Triage)

It is the caretaker’s responsibility to assign comp: * to each new issue as they come in.

If it’s obvious that the issue or PR is related to a release regression, the caretaker is also responsible for assigning the severity(5): regression label to make the issue or PR highly visible.

The primary triage should be done on a daily basis so that the issues become available for secondary triage without much of delay.

The reason why we limit the responsibility of the caretaker to this one label is that it is likely that without domain knowledge the caretaker could mislabel issues or lack knowledge of duplicate issues.

Component’s owner Triage Process

The component owner is responsible for assigning one of the labels from each of these categories:

	type: *

	frequency: *

	severity: *

We’ve adopted the issue categorization based on user pain [http://www.lostgarden.com/2008/05/improving-bug-triage-with-user-pain.html] used by AngularJS. In this system every issue is assigned frequency and severity based on which the total user pain score is calculated.

Following is the definition of various frequency and severity levels:

	freq(score): * – How often does this issue come up? How many developers does this affect?

	low (1) - obscure issue affecting a handful of developers

	moderate (2) - impacts auxiliary usage patterns, only small number of applications are affected

	high (3) - impacts primary usage patterns, affecting most Angular apps

	critical (4) - impacts all Angular apps

	severity(score): * - How bad is the issue?

	inconvenience (1) - causes ugly/boilerplate code in apps

	confusing (2) - unexpected or inconsistent behavior; hard-to-debug

	broken expected use (3) - it’s hard or impossible for a developer using Angular to accomplish something that Angular should be able to do

	memory leak (4)

	regression (5) - functionality that used to work no longer works in a new release due to an unintentional change

	security issue (6)

These criteria are then used to calculate a “user pain” score as follows:

pain = severity × frequency

This score can then be used to estimate the impact of the issue which helps with prioritization.

Triaging PRs

Triaging PRs is the same as triaging issues, except that PRs have additional label categories that should be used to signal their state.

Every triaged PR must have a pr_action label assigned to it:

	PR action: review - work is complete and comment is needed from the reviewers.

	PR action: cleanup - more work is needed from the author.

	PR action: discuss - discussion is needed, to be led by the author.

	PR action: merge - the PR is ready to be merged by the caretaker.

In addition, PRs can have the following states:

	PR state: WIP - PR is experimental or rapidly changing. Not ready for review or triage.

	PR state: blocked - PR is blocked on an issue or other PR. Not ready for review or triage or merge.

PR Target

In our git workflow, we merge changes either to the master branch, the active patch branch (e.g. 5.0.x), or to both.

The decision about the target must be done by the PR author and/or reviewer.
This decision is then honored when the PR is being merged by the caretaker.

To communicate the target we use the following labels:

	PR target: master & patch: the PR should me merged into the master branch and cherry-picked into the most recent patch branch. All PRs with fixes, docs and refactorings should use this target.

	PR target: master-only: the PR should be merged only into the master branch. All PRs with new features, API changes or high-risk changes should use this target.

	PR target: patch-only: the PR should be merged only into the most recent patch branch (e.g. 5.0.x). This target is useful if a master & patch PR can’t be cleanly cherry-picked into the stable branch and a new PR is needed.

	PR target: LTS-only: the PR should be merged only into the active LTS branch(es). Only security and critical fixes are allowed in these branches. Always send a new PR targeting just the LTS branch and request review approval from @IgorMinar.

	PR target: TBD: the target is yet to be determined.

If a PR is missing the “PR target: *” label, or if the label is set to “TBD” when the PR is sent to the caretaker, the caretaker should reject the PR and request the appropriate target label to be applied before the PR is merged.

PR Approvals

Before a PR can be merged it must be approved by the appropriate reviewer(s).

To ensure that there right people review each change, we configured PullApprove bot [https://about.pullapprove.com/] via (.pullapprove.yaml) to provide aggregate approval state via the GitHub PR Status API.

Note that approved state does not mean a PR is ready to be merged.
For example, a reviewer might approve the PR but request a minor tweak that doesn’t need further review, e.g., a rebase or small uncontroversial change.
Only the PR action: merge label means that the PR is ready for merging.

Special Labels

cla: yes, cla: no

Managed by googlebot.
Indicates whether a PR has a CLA on file for its author(s).
Only issues with cla:yes should be merged into master.

aio: preview

Applying this label to a PR makes the angular.io preview available regardless of the author. More info

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

